CSD-VAR: Content-Style Decomposition in Visual Autoregressive Models

Abstract

Disentangling content and style from a single image, known as content-style decomposition (CSD), enables recontextualization of extracted content and stylization of extracted styles, offering greater creative flexibility in visual synthesis. While recent personalization methods have explored explicit content-style decomposition, they remain tailored for diffusion models. Meanwhile, Visual Autoregressive Modeling (VAR) has emerged as a promising alternative with a next-scale prediction paradigm, achieving performance on par with diffusion models. In this paper, we explore VAR as a generative framework for CSD, leveraging its scale-wise generation process for improved disentanglement. To this end, we propose CSD-VAR, a novel method that introduces three key innovations: (1) a scale-aware alternating optimization strategy that aligns content and style representation with their respective scales to enhance separation, (2) an SVD-based rectification method to mitigate content leakage into style representations, and (3) Augmented Key-Value (K-V) memory enhancing content identity preservation. To benchmark this task, we introduce CSD-100, a dataset specifically designed for content-style decomposition, featuring diverse subjects rendered in various artistic styles. Experiments demonstrate that CSD-VAR outperforms prior approaches, achieving superior content preservation and stylization fidelity

Publication
International Conference on Computer Vision (ICCV), 2025
Khoi Nguyen
Khoi Nguyen
AI Research Scientist

My research interests include Computer Vision