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• Problem statement: In training, a large training set of base 
classes (i.e., images + instance mask annotations) is provided. 
In testing, given a few annotated examples of new classes 
without the access to the training examples of the base 
classes, our goal is to segment both new and base classes

• Key challenges: how to address a paucity of data for new
classes, and how to train on the new classes such that the
base classes are not “forgotten

• Applications where access to the old training data becomes 
unavailable due to, e.g., privacy and security issues or new 
legal regulations of data access; or limited time budgets 
prohibit retraining on both base and new classes. 

Table 1. Ablation Study with FSIS

Figure 3. Comparison to SOTA with iFSIS
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box {bk} on a few training examples, we specify the following box loss:

Lb = Lu + Lrefine, (6.4)

where Lu is our new uncertainty-weighted box loss and Lrefine is loss incurred by the box refine-
ment module.

We define Lu as

Lu =
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where b⇤ is the ground-truth box. The first term in (6.5) is aimed at minimizing a weighted dif-
ference between the ground-truth and predicted boxes. The weighting is inversely proportional
to the predicted uncertainty uk such that the lower loss is incurred for box predictions with high
uncertainty. The second term in (6.5) is aimed at minimizing uncertainty values such that the
network incurs a penalty for predicting high uncertainty when trying to reduce the first term in
(6.5).

When the box refinement module makes the final prediction b, it incurs the following loss:

Lrefine =
4X

k=1

smooth L1(bk, b
⇤
k
) (6.6)

It is worth noting that our loss formulation fundamentally differs from other recent ap-
proaches aimed at estimating uncertainty in object detection. For example, recent approaches
[44, 65] make the assumption that the bounding-box location and its uncertainty are governed
by a Gaussian distribution. In contrast, we do not explicitly specify any probability distribution
of box locations. Mask-PU appears related to Cascade-RCNN [8, 9] which also refines the ini-
tial box. However, these approaches do not explicitly predict uncertainty and thus cannot use
uncertainty as an input feature for the box refinement as we do. In experiments for FSIS, these
approaches show worse performance than our uncertainty-guided box refinement module.

6.3.4 Our Training and Testing Strategies

Algo. 3 describes our training and testing strategies.
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approximation of the posterior predictive distribution. We first observe that our fine-tuning of
the classification head’s last layer using Bayesian learning is equivalent to learning a Bayesian
logistic regression (BLR). Conveniently, the well-known probit function �(x) [105], [4, p. 219]
provides a deterministic approximation to BLR. The probit function approximates the sigmoid
function as �(x) ⇡ �(�x) = 1

2

h
1 + erf

⇣
�xp
2

⌘i
, where erf(·) is the error function, and �2 = ⇡/8

ensures that the two functions have the same slope at the origin. An important property of the
probit function is that its convolution with a Gaussian function can be expressed analytically.
Let a 2 R be a random variable whose expectation and variance can be expressed as E[a] =

µa = f>µ 2 R and V[a] = ⌃a = f>⌃f 2 R. Then the posterior predictive distribution given
by (6.2) can be efficiently approximated as

p(c|f, µ, ⌃) =
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As our classifier head uses the probit function for the MAP class prediction, we call it the probit
classifier. It is suitable for iFSIS, because not only does it leverage Bayesian learning to address
the paucity of training data, but it also predicts a score for each class independently to address
incremental learning.

6.3.3 Uncertainty-Guided Bounding Box Predictor

Object appearances, shapes, and scales in test images may significantly differ from a few training
examples available. Also, target objects in query images may be subject to partial occlusion. All
this gives rise to uncertainty in bounding box prediction. We seek to explicitly model this uncer-
tainty when predicting four offset values {mk}k=1..4 2 R4 that initially identify the location of
bounding boxes. Specifically, as shown in Fig. 6.2, our box predictor additionally estimates four
uncertainty values {uk}k=1..4 2 R4

+ of the bounding box prediction, one for each of the {mk}
predictions. The estimated uncertainty {uk} is then used as input along with the ROI-align-
pooled features – extracted from the initially predicted box m – to the box refinement module
for the final offset bounding-box prediction {bk}k=1..4 2 R4.

To learn how to predict: uncertainty {uk}, initial bounding-box {mk}, and refined bounding-
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Figure 2. Qualitative results on COCO

Qualitative Results

Figure 1. Bounding-box refinement. Left: initial, Right: refined

Contrib. 1 Contrib. 2 1 2 3 5 10 30
Mask-RCNN ✗ ✗ 3.71 5.24 5.29 7.66 8.46 11.09
Mask+Sigmoid ✗ ✗ 3.92 4.63 5.63 7.15 7.67 10.94

✓ ✗ 5.15 6.03 7.67 9.34 9.52 12.07
✗ ✓ 4.84 5.88 7.00 8.62 9.22 11.98

iFS-RCNN ✓ ✓ 5.54 6.33 7.80 9.41 10.23 13.08

Mask-RCNN

code


