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Our Approach

A Typical Approach

• Training: Sufficiently many images with ground-truth segmentation of base classes.

• Testing: Few support images with ground-truth segmentation of a target class, and a

query image. The training and test sets do no share the same object classes.

• Goal: Segment the target class in a query image.

Problem Statement
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From Tab. 5.3, our AFD in FAIS improves performance by 1.6% on mAP50 over FIS that
uses the anchor-based detector. However, removing the SimNet from the AFD in FAIS-SimNet
decreases performance, justifying our SimNet as a better way to predict FG scores than in [121,
79]. The PIS in FPIS gives a performance gain of 1% on mAP50 in instance segmentation
over FIS. Our performance decreases when FAPIS is trained without the NMF regularization in
FAPIS-LNMF. FAPIS gives the best performance in comparison with the strong baselines.

Note that we cannot directly evaluate our part detection, since we do not have ground-truth
annotations of parts.

Tab. 5.4 and Tab. 5.5 show the average over five runs of full COCO metrics of FAPIS on
object detection and instance segmentation respectively.

# shots Method COCO-200 COCO-201 COCO-202 COCO-203 mean

K=1

Meta-RCNN [121] 17.7 ± 0.7 19.2 ± 0.6 17.7 ± 0.3 21.1 ± 0.4 18.9
Siamese M-RCNN [79] 18.3 ± 0.8 19.5 ± 0.7 18.0 ± 0.4 21.5 ± 0.6 19.3

YOLACT [6] 18.0 ± 0.5 18.8 ± 0.5 17.8 ± 0.6 21.2 ± 0.7 19.0
FAPIS 20.9 ± 0.4 20.4 ± 0.1 20.0 ± 0.6 23.4 ± 0.5 21.2

K=5

Meta-RCNN [121] 19.1 ± 0.4 21.2 ± 0.2 19.6 ± 0.5 24.0 ± 0.2 21.0
Siamese M-RCNN [79] 20.0 ± 0.4 21.6 ± 0.3 20.2 ± 0.4 24.1 ± 0.3 21.5

YOLACT [6] 20.8 ± 0.4 21.1 ± 0.2 20.2 ± 0.5 24.8 ± 0.2 21.7
FAPIS 22.6 ± 0.3 22.8 ± 0.0 22.6 ± 0.6 26.4 ± 0.2 23.6

Table 5.6: mAP50 with standard deviation of one-shot and five-shot object detection on COCO-
20i. The best results are in bold.

# shots Method COCO-200 COCO-201 COCO-202 COCO-203 mean

K=1

Meta-RCNN (Yan et al., ICCV 19) 16.0 ± 0.6 16.1 ± 0.5 15.8 ± 0.3 18.6 ± 0.4 16.6
Siamese M-RCNN (Michaelis et al., Arxiv 18) 16.6 ± 0.8 16.6 ± 0.6 16.3 ± 0.7 19.3 ± 0.6 17.2

YOLACT (Bolya et al., ICCV 19) 16.8 ± 0.6 16.5 ± 0.5 16.1 ± 0.4 19.0 ± 0.6 17.1
FAPIS 18.8 ± 0.3 17.7 ± 0.1 18.2 ± 0.7 21.4 ± 0.4 19.0

K=5

Meta-RCNN (Yan et al., ICCV 19) 17.4 ± 0.3 17.8 ± 0.2 17.7 ± 0.7 21.3 ± 0.2 18.6
Siamese M-RCNN (Michaelis et al., Arxiv 18) 17.5 ± 0.4 18.5 ± 0.1 18.2 ± 1.0 22.4 ± 0.2 19.2

YOLACT (Bolya et al., ICCV 19) 17.6 ± 0.2 18.4 ± 0.2 17.9 ± 0.6 21.8 ± 0.3 18.9
FAPIS 20.2 ± 0.2 20.0 ± 0.1 20.4 ± 0.7 24.3 ± 0.2 21.2

Table 5.7: mAP50 with standard deviation of one-shot and five-shot instance segmentation on
COCO-20i. The best results are in bold.
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# parts 1 2 4 8 16 32 64
mAP50 16.3 17.2 17.9 18.4 18.8 18.5 18.0

Table 5.1: mAP50 for segmentation of FAPIS on COCO-200 for different numbers of the latent
parts J used.

two convolutional layers with GroupNorm [117] and ReLU activation in between, but use two
separate heads for binary class and part-importance predictions. We strictly follow the design
of classification head and box regression head of FCOS [109]. SimNet has a block of four fully
connected layers with BatchNorm [48] and ReLU in between each layer, followed by a top con-
volutional layer, where the block predicts the weights of the top layer. The PartNet consists of 5
convolutional layers with GroupNorm and ReLU, and an Upsampling layer to upscale the reso-
lution by two in the middle of layer 3 and 4, following the design of mask head of Mask-RCNN
[42]. For learning, we use SGD with momentum [20] with the learning rate of 1e�3. The number
of training epochs is 12, which is similar to the setting of 1x in Mask-RCNN. The mini-batch
size is 16. The query images are resized to 800⇥1333 pixels. The support images and masks
are cropped around the ground-truth bounding boxes and re-sized to 128 ⇥ 128 pixels. We set
Hr = Wr = 32, ↵ = 0.25 and � = 2 in (5.1), and �1 = �2 = �3 = 1, �4 = 0.1 in (5.6).

5.4.2 Ablation Study

Ablations and sensitivity to input parameters are evaluated for the setting K = 1.
Analysis of the number of parts. Tab. 5.1 reports how the number of latent parts J affects

our results. We vary J while keeping other hyper-parameters unchanged. From Tab. 5.1, J = 16

gives the best performance. When J is small, FAPIS cannot reliably capture object variations,
and when J approaches the number of classes considered in training, the PartNet tends to predict
shape prototypes as in YOLACT [6], instead of parts. Therefore, we use J = 16 for all other
evaluations.

Analysis of the predicted part importance. Tab. 5.2 shows a percentage of the latent parts
whose predicted importance for segmentation is higher than a threshold ✓ 2 (0, 1). As can be
seen, for a given object instance, most latent parts are usually estimated as irrelevant. That is, the
PAM essentially uses only a few most important latent parts to form the instance segmentation
mask.

Table 1. Performance with different numbers of parts on COCO-200

Table 2. mAP50 with std of one and five-shot instance segmentation on COCO-20i

The box head of Mask-RCNN is anchor-based 
è overfitting to particular sizes and aspect 

ratios of training classes

Motivation
Contribution 1: 

Anchor-free object 
detector

The mask head of Mask-RCNN learns feature 
prototypes capturing global outlines of objects
è overfitting to the shapes of training classes

Contribution 2: 
Part-based instance 

segmenter


