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1 Introduction

First, when we talk about Machine Learning, we usually talk about models to
fit the data. There are a lot of problems in Machine Learning, but we can list
some here are regression, classification and clustering. On another aspect,
we can classify Machine Learning method by supervised, unsupervised and
semi-supervised learning. With supervised learning, we always have both
{X,Y } values in training examples while unsupervised we just have X value.
Semi-supervised learning just has a small number of {X,Y } and major is X only.
So that is the differences between many machine learning methods depend on
learning problem.

Besides, we can divide a typical machine learning process into 4 steps as fol-
low: data pre-processing step, learning step, testing and report step. With
data pre-processing step with the aim is that transform the raw data into
standard data called training set input which have the form {X,Y } where
X =< x1, x2, x3, . . . , xn > are the features or attributes of the data. For
example, when learning the parameter for predicting the weather tomorrow is
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sunny or rainy. We have many features like today’s temperature, today’s hu-
midity, today’s weather and so on. And Y is the value tomorrow’s is rainy or
sunny. With the learning step, the learner (machine learning method) will try to
learn some “hidden” parameters from these training examples to form a model.
After that, the learner will apply this model to new data in testing set and try
to predict new Ŷ from Xtest and compare values of Ŷ with the value of Ytest.
In some learning method, they also have hyper-parameter that is, cannot learn
directly from the training example only, they have to use another set called
validation set to learn these hyper-parameter. And finally report the result
based on some metrics for each different learning problems. Now we come to
the simple method for regression, that is linear regression.

2 Regression Algorithms

2.1 Linear Regression

Linear Regression defines the relation between X and Y in linear. That is

y = w1x1 + w2x2 + . . .+ wnxn

where w1, w2, . . . , wn are the parameters of X to form a line or hyperplane.
Linear Regression’s goal is to learn these parameters, and when a new testing
example, they will calculate the new Ŷ = w1x1 + w2x2 + . . . + wnxn. In the
testing step, we just calculate the accuracy of the linear regression model by
using Sum of Square Error metric, that is:

SSE =
1

2

N∑
i=1

(ŷi − yi)2

The smaller SSE, the better learner. But how we estimate these w for the linear
regression model. We have several ways. First, we can use normal equation to
find the closed form of the solution. In this case, we have w = (XTX)−1XTY ,
however, this way is just applied to a small dataset.Algorithms

With larger data set, we cannot use this method, instead, we use Gradient
Descent method to find w. We have to set up the Target function, in this case,
is Loss function: SSE. We derive the gradient of SSE with the following formula:

∇E(w) =

N∑
i=1

(wTxi − yi)xi

And we update w with formula: w = w − λ∇E(w) we repeat this step until
∇E(w) < ε, which ε is the converge criterion. λ here is learning rate. If λ is
small, slower to converge but it avoids overstepping. Otherwise, λ is large, the
learning algorithm will converge faster, but it will be oscillating in some cases.
That is Batch Gradient Descent, it requires all training examples for each
step to update w. In some cases, it takes a lot of times to train. However, we
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can use Stochastic Gradient Descent to update w with just one learning
example with w = w − λ(wTxi − yi)xi.

However, many problems in the real world are not linearly separable, so we
have to modify the Linear Regression to work well with nonlinearly separable
data as well. One of the solutions is to use a function with M-order polynomial.
Instead of using different features, we use different orders of the same features
or combine them in a different way.

For example, we can use < 1, x, x2, x3, . . . > to fit non-linear separable prob-
lems. With that idea, we can draw a conclusion is that the higher the order,
the better the learner will perform because it is clear that the higher order
will fit the data better than lower order polynomial. But wait, it is right for
training data, with the testing data, it is another story. If the learner fit too
much with the training data, it called overfit, then when it comes with a new
example from testing data, the performance will decrease significantly. So we
have a contradiction here is the lower polynomial will not match with the data
both from training data and testing data, it called underfit, however, when the
order of the polynomial is so high, it makes the learner become overfit with the
training data. Therefore, there must be a particular order of polynomial that
give the best performance in testing data. We can see the illustration in the
following figure.

To achieve this, we have introduced the regularization term. We have the
objective function as follow.

N∑
i=1

(ŷi − yi)2 + λ

M∑
j=0

|wj |q

where λ in this scenario is regularization coefficient, M is the order of the
polynomial and q is the type of regularizers (we commonly have q = 1 is called
Lasso regularization, q = 2 is called Ridge regularization). We can also
use Gradient Descent to estimate the w from the Regularized Objective.

With the regularization term, we have the closed form of linear regression:

w = (λI +XTX)−1XTY,

If λ is large, it puts more penalty for regularization term or high order poly-
nomial so it likely makes the lower order while small λ will allow the learner
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fit more with the training data and it likely makes the higher order. To get
the optimal λ we can use cross-validation with k-fold. In this case, k is the
number of parts separated from the training data, with 1 part is used for testing
and k− 1 parts are used for training. The value of λ that give the best average
performance on cross-validation is chosen.

That is all the basic things to know about the linear regression.

3 Classification Algorithms

3.1 Generative and Discriminative Models

With Linear Regression model, we can solve many regression problems, however,
with classification problem we must have another model to handle. There are
two different approaches the classification problem, they are Generative model
and Discriminative model.

The Generative model in general will extract the probability distribution
from the training example, and then with the new example, they will estimate
the probability of the new example with different classes of classification prob-
lem, i.e. P (y = k|x), which k is the class. The class with higher probability
P (y = k|x) will be chosen. Examples of this type of model is Naive Bayes
and Linear Discrminative Analysis and One important characteristic that
all Generative Models have is to use Bayes rule to calculate the P (y = k|x):

P (y = k|x) =
P (x, y = k)

P (x)
=
P (x|y = k)P (y)

P (x)

Because P(x) are the same for all k classes so we have:

P (y = k|x) ∝ P (x|y = k)P (y)⇔ arg max
k

P (y = k|x) = arg max
k

P (x|y = k).P (y)

On the other hand, with the Discriminative model, there are two types of
model. First is using Probability to compute the P (y = k|x) directly from the
data without using Bayes rule such as Logistic Regression. Other is to find
the decision boundary between classes directly. We can list here some examples
are Perceptron, Support Vector Machine (SVM) and Decision Tree.

One important point to mention here is that all the models, which use
Probability to calculate the P (y = k|x), form a group called Probabilistic
Graphical Model. Besides, the important characteristic among all probabilis-
tic models is likelihood. That is the relation between the given data D and the
parameter w that we want to estimate from that data.

P (w|D) =
P (D|w)P (w)

P (D)

Because P (D) are the same with all w so we can omit P(D), so:

∝ P (D|w)P (w) = P (x, y|w)P (w) = P (y|x,w)P (x,w)P (w)
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Because P (x,w) can be dropped because it does not depend on w or w and x
are independent, so:

∝ P (y|x,w)P (w)

So we have:
arg max

w
P (w|D) = arg max

w
P (y|x,w)P (w)

Notice that P (w|D) is Posterior, P (y|x,w) is Likelihood, we can think it
is a function with parameter w, so we can write in form of P (y|x); and P (w)

is Prior. With Generative Model, we have P (y|x) = P (x,y)
P (x) ∝ P (x, y), we

calculate P (y|x) by using Bayes rules as mentioned above. With Discriminative
Model, we calculate P (y|x) directly from the data.

3.2 Perceptron

The most basic model for classification problems is Perceptron. It is a linear
classifier and just use a linear boundary to decide a point is belong what class.
It is quite simple with the idea is that if the classification is wrong, it will change
the decision boundary to fit with the new example.

With Perceptron model, we have:

y = sign(w1x1 + w2x2 + . . .+ wnxn) = sign(wTx)

We have to define the Loss function of Perceptron as follow:

J(w) =
1

n

n∑
m=1

max(0,−ymwTxm)

Jm(w) = max(0,−ymwTxm)

If we predict correctly, −ymwTxm < 0, so there is no loss. Otherwise, when we
predict wrong, −ymwTxm > 0. With the same method as Linear Regression,
we use Gradient Descent to estimate w to minimize the Loss Function above:

∇J(w) =

{
0, if we predict correctly

−ymxm, otherwise

Notice that you can use both Batch Gradient Descent and Stochastic Gradient
Descent for particular purposes. The boundary is characterized by normal vector
w =< w1, w2, w3, . . . , wn >. If the Perceptron model misclassifies any example,
the new normal vector will be updated with the value: w = w+ ymxm. We can
see an example in the following figure
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So we complete the Perceptron model, the simplest model for classification
here. Next we discuss the Logistic Regression.

3.3 Logistic Regression

Logistic Regression is the most basic discriminative model that is simple but
strong enough to build larger model like Neural Network. Logistic Regression
is much like linear regression with minor exception we will discuss later. As we
say above Logistic Regression is one of probabilistic graphical model so we have
the likelihood as follow, remember we calculate P (y|x) directly from the data:

h(x) = P (y = k|x) =
1

1 + e−wT x

With the notice that function h(x) above is called Sigmoid function which
has value in range (0, 1) from the value of wTx in range (−∞,∞). Our job
is to find w such that it maximize the term likelihood above. To do that, we
have the reversed method of Gradient Descent called Gradient Ascent. That
maximize the objective function, in this case is the likelihood above. Also, the
process of maximize the likelihood is called Maximum Likelihood Estima-
tion. With the same process with Gradient Descent, we first get the derivative
of the objective function and then using iterative to update the w and after a
number of iterative, the Algorithm will converge to get a optimal w.
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In more detail, we have the likelihood function of Logistic regression can be
written in compact form as P (yi|xi) = ŷyii (1 − ŷi)(1−yi) where ŷi = 1

1+e−w
T xi

.

Remember that each training example (xi, yi) is drawn Independent and iden-
tically distributed (IID) and we can use log of likelihood function, called Log
likelihood function above for easy calculation: l(w) =

∑
i logP (yi|xi) We use

Gradient Ascent and get:

∇l(w) =

N∑
i=1

(yi − ŷi)xi

With new example, we first compute the sigmoid function of P (y = k|xnew)
we classify new example belong to class k if the value of sigmoid function is
greater than the Threshold θ, otherwise it belongs to another. We can also
use Logistic Regression for Multi-class Classification. We have 2 approaches:
one vs. rest and pairwise. We set up the posterior probability using a so-called
soft-max or normalized exponential function

P (y = k|x) = ŷk =
ew

T
k x∑K

j=1 e
wTj x

We will get the: ∇l(w) =
∑N
i=1 (yik − ŷik)xi where yik = 1 if yi = k, and 0

otherwise.
In the Linear Regression, we use Regularization term called λ

∑M
j=0 |wj |q. So

I will talk about it in more detail. First, from the Discriminative part in above
section, I have discussed the Posterior P (w|D) and Prior P (w). If w is a con-
stant, we have P (w) is a constant to. However, in case of w is a random variable,
we have P (w) is a prior distribution, which can can get advantage of knowing a
prior knowledge about the w for less complex calculation. For example, in Logis-
tic Regression, we can assume that P (w) is a Normal Distribution N(0, σ2).
We called this method is Maximum A Posterior (MAP). Large weight for
prior values correspond to more complex hypothesis, so this prior prefer simpler
hypothesis. Thus we have new log likelihood function for Logistic Regression:

arg max
w

∑
j

logP (yj |xj , w)− λ

2

∑
i

w2
i

The regularization term here is −λ2
∑
i w

2
i where λ = 1

σ2 and the new Gradient
is

∇L(w) =

N∑
i=1

(yi − ŷi)xi − λw

We again, can use the value of λ to control the complexity of model. If λ is
small, it is equivalent to MLE, we do not make use of prior knowledge, lead
to over-fitting. If λ is large, it ignores training data, just based on the prior
knowledge. We want to find the best value of λ to both make use of prior
knowledge and learning data.
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Last but not least, because Logistic regression is a discriminative model, we
talk about its decision boundary. At first glance, we saw the sigmoid function
is not linear, so we conclude that the decision boundary. It completely wrong,
the term wTx in Sigmoid function is linear function so it also has linear decision

boundary. We decide 1 if P (y = 1|x) > P (y = 0|x) ⇒ P (y=1|x)
P (y=0|x) > 1 ⇒

log P (y=1|x)
P (y=0|x)>0 ⇒ wTx > 0. It separate the space into 2 parts which have

wTx > 0 and wTx < 0 with a decision line is wTx = 0. However, with non-
linear sigmoid function, for example we have: g(x) = w0 +w1x1 +w2x

2
1 +w3x

2
2.

x1, x2 have circular relation, so we have Decision boundary is a circle (center
at (0, 0) and a radius of 1) which divides the space into 2 parts, outside the
circle (g(x) ≥ 0) we predict 1 and inside the circle (g(x) < 0) we predict 0. The
following figure will give more detail.

To this point, we complete the Logistic Regression here. Next, we move on a
example of Generative Model, that is Naive Bayes model which is the simplest
Generative Model.

3.4 Naive Bayes

With Naive Bayes, we should use the assumption of conditional independence
(naive) between different features xi given class y. Naive Bayes model is usually
used in Text Retrieval and Text Classification problem, the problem of judging
documents as belonging to one category or the other. As talking about the
Likelihood of Generative model, in general form, Naive Bayes can be written
as:

P (y|x) =
P (x|y)P (y)

P (x)

Because P (x) is the same in all different classes, so we have: P (y|x) ∝ P (x|y)P (y).
As we say earlier, we assumed that different features are independent given the
class so we have

P (y|x) ∝
M∏
i=1

P (xi|y)P (y)
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where M is the number of features. To exactly compute P (y|x), we have to
compute the term P (x) as follow:

P (x) =

K∑
k=1

M∏
i=1

P (xi|y = k)P (y = k)

where K is the number of classes. Again, we have the product function, in-
stead of maximizing the likelihood directly, we can use log-likelihood for easier
calculation. So we have:

logP (y|x) ∝
M∑
i=1

logP (xi|y)P (y)

Thus we have:

ŷ = arg max
y

P (y)

M∑
i=1

logP (xi|y)

With this conditional independent assumption, we can reduce the number
of parameters for P (x|y) from k(2d−1) to kd parameters where k is the number
of classes and d is the number of features. It removes the need for memorization
and significantly reduces over-fitting. In addition to parameter for representing
P (y), we have total number of parameters for Naive Bayes model is k(d− 1) +
(k − 1). To this point, all the things we have to do is compute each P (xi|y)
correctly. Notice that y is Discrete variable and we can easily compute P (y)
from the training set (i.e., (prior for a given class) = (number of samples in
the class) / (total number of samples)). So depends on the value of x, we have
different distribution of P (xi|y). With x is continuous, we have one popular
distribution is Gaussian Naive Bayes (GNB), and when x is discrete, we have
2 popular distributions is Bernoulli Naive Bayes (BNB) and Multinomial
Naive Bayes.

With Gaussian Naive Bayes, we assume that the continuous values associ-
ated with each class are distributed according to a Gaussian distribution. For
example, suppose the training data contain a continuous attribute, x. We first
segment the data by the class, and then compute the mean and variance of x in
each class. Let µk be the mean of the values in x associated with class k, and let
σ2
k be the variance of the values in x associated with class k. Then, the probabil-

ity distribution of some value v given a class, p(xi = v|y = k), can be computed
by plugging v into the equation for a Normal distribution parameterized by µc
and σ2

c . That is,

p(xi = v|y = k) =
1√

2πσ2
k

e
− (v−µk)2

2σ2
k

Next, we discuss Bernoulli Naive Bayes. Instead of being continuous, in
this case, x is binary value which only have value 0 and 1. xi = 1 represents
the occurrence of the word ith in the vocabulary (for example in Document
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Classification task), and vice versa xi = 0 represents the absence of the word
ith in the vocabulary. So the likelihood of the document given the class k is:

P (xi|y = k) = pxiki(1−pki)
(1−xi) ⇔ logP (xi|y = k) = xilogpki+(1−xi)log(1−pki)

where pki is the probability of class k generating the term wi. We use MLE for
Bernoulli to estimate pki as follow:

pki =
number of documents contain word i in class k

total number of documents in class k

Then, we talk about the Multinomial Naive Bayes. x is also discrete but xi
now represents for number of occurrence of word ith in the document. so we
have the likelihood of the document given the class k as follow:

P (xi|y = k) = pxiki ⇔ logP (xi|y = k) = xilogpki

In this case, we have the likelihood

logP (y = k|x) ∝ log

(
P (y = k)

n∏
i=1

pki
xi

)

= logP (y = k) +

n∑
i=1

xi · log pki

= b+ w>k x

where b = log p(y = k) and wki = log pki. So we can see that Naive Bayes
with Discrete value of x becomes a linear classifier like Logistic Regression in
log-space. Again, we use MLE for Multinomial to estimate the value of pki,
which lead to:

pki =
number of word i in class k

total number of words in class k

When we use MLE for estimating discrete data of Naive Bayes, we have to
deal with the problem is that with some rare words say “Mahalanobis”, when
compute the P (xi|y = k), pki = 0, that leads to whole P (y = k|x) = 0, it seems
like the class k, which does not have the word “Mahalanobis” in the training set,
is the not the class of given test example although other words in test example
all belongs to this k class. To deal with that problem, we have to use the MAP
(Maximum a Posterior) as mentioned above. We introduce the Conjugate
Prior Distribution of the base distribution. In particular, the conjugate prior
distribution of Bernoulli distribution is Beta distribution and Conjugate prior
distribution of Multinomial distribution is Dirichlet distribution. The definition
of conjugate prior can be seen more in Wikipedia 4.

For Bernoulli NB, we estimate the optimize w = ni+α−1
n+α+β−2 where ni, n, α, β

are the number of documents contain word ith of class k, number of documents
of class k and 2 parameters of Beta distribution respectively. We usually choose

4https://en.wikipedia.org/wiki/Conjugate_prior
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α = β = 2, and wMAP = ni+1
n+2 and we call this is Laplace Smoothing. For

Multinomial NB, with K outcomes, a Dirichlet distribution has K parame-
ters, each serves a similar purpose as Beta distribution’s parameters. Laplace
Smoothing in this case:

Pki =
nk + 1

n+K

In case of document of classification, pki = ni+1
n+V , where ni is the number of

word i in class k, n is the total number of words in class k and V is the size of
vocabulary. Furthermore, we can use parameter α to control this smoothing as
follow:

pki =
ni + α

n+ αV

when α = 0 this smoothing becomes MLE, when α = 1, this is Laplace Smooth-
ing. With different dataset, we have different optimal α and we have to use
cross validation to choose the best alpha for each dataset.

That’s all the things I want to discuss about the Naive Bayes. I move on to
another Generative models called Linear Discriminant Analysis.

3.5 Gaussian Discrminant Analysis

Gaussian Discriminant Analysis or Linear Discriminant Analysis (LDA) is a
generative model (it is confused with its name, huh?), in which we can learn the
model’s parameters by maximizing the joint likelihood P (x, y) = P (x|y)P (y).
Then we predict the class for giving testing example by:

arg max
y

P (y|x) = arg max
y

P (x|y)P (y)

P (x)
= arg max

y
P (x|y)P (y)

In LDA, in basic set up, y has two values, which means 2 classes. We assume
that each class draws from normal distribution:

P (x|y = 0) ∼ N(µ0,Σ)

P (x|y = 1) ∼ N(µ1,Σ)

Note that µ0, µ1 are 2 different means of 2 normal distributions, Σ is shared
covariance matrix.
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I will recall some knowledge about Multivariate Gaussian as follow:

With 2 classes, we have the following log-likelihood of LDA given a set of training
data, with y ∼ Bernoulli(ψ)

Like Naive Bayes, we also use MLE to estimate the parameters, and get:
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Next, we talk about the linear decision boundary of LDA. We will predict y = 1
if:

P (x|y = 1)P (y = 1)

P (x|y = 0)P (y = 0)
> 1

Equivalently:

log
P (x|y = 1)P (y = 1)

P (x|y = 0)P (y = 0)
> 0 = wTx+ w0 > 0

Besides, we have:

We can see that, it looks like decision boundary of logistic regression. In Logistic
Regression, we conclude that the decision boundary of linear sigmoid function
of logistic regression is a linear boundary. We also have the observation is that
LDA makes stronger and more restrictive assumption. If we don’t know if the
data is followed Gaussian distribution, logistic regression will be more robust.
Otherwise, LDA is preferred.

We complete LDA, and also complete the first section of series “Introduc-
tion to Machine Learning”. In the next section, we talk about very famous
Machine Learning models, they are K-Nearest Neighbors, Support Vector Ma-
chine (SVM), Decision Tree and Neural Network. All of them can be used for
Regression problem as well. But I don’t cover in this introduction.

4 Both Regression and Algorithms

4.1 K Nearest Neighbors

After discuss 2 Generative models those are Naive Bayes and LDA, we come back
to a famous Discriminative model kNN. It is a very simple Machine Learning
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model used for classification and regression task. I extract some information
about it on Wikipedia as follow. In both cases, the input consists of the k
closest training examples in the feature space. The output depends on whether
k-NN is used for classification or regression.

• In k-NN classification, the output is a class membership. An object is clas-
sified by a majority vote of its neighbors, with the object being assigned
to the class most common among its k nearest neighbors (k is a positive
integer, typically small). If k = 1, then the object is simply assigned to
the class of that single nearest neighbor.

• In k-NN regression, the output is the property value for the object. This
value is the average of the values of its k nearest neighbors.

k-NN is a type of instance-based learning, or lazy learning, where the func-
tion is only approximated locally and all computation is deferred until classi-
fication. The k-NN algorithm is among the simplest of all machine learning
algorithms. Both for classification and regression, it can be useful to assign
weight to the contributions of the neighbors, so that the nearer neighbors con-
tribute more to the average than the more distant ones. For example, a common
weighting scheme consists in giving each neighbor a weight of 1/d, where d is
the distance to the neighbor. A commonly used distance metric for continuous
variables is Euclidean distance. For discrete variables, such as for text classi-
fication, another metric can be used, such as the overlap metric (or Hamming
distance)

The above figure is an example of k-NN classification. The test sample (green
circle) should be classified either to the first class of blue squares or to the second
class of red triangles. If k = 3 (solid line circle) it is assigned to the second class
because there are 2 triangles and only 1 square inside the inner circle. If k = 5
(dashed line circle) it is assigned to the first class (3 squares vs. 2 triangles
inside the outer circle).

k in k-NN is hyper-parameter so the best choice of k depends upon the data;
generally, larger values of k reduce the effect of noise on the classification but
make boundaries between classes less distinct. A good k can be selected by
various heuristic techniques like Cross-validation.
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We complete the k-NN model here. In the next section, I will talk about
Support Vector Machine (SVM) - a very popular machine learning algorithm.

4.2 Support Vector Machine

Support Vector Machine likes Perceptron in the point, it does not assume the
data followed any distributions or relation like Logistic Regression, Naive Bayes
and LDA. So it is a very robust method when applying for unknown distribution
data. When we talk about SVM, we talk about 2 very important features of
SVM, those are Margin and Kernel.

To begin, we talk about its margin. In other previous machine learning
models, we draw a separate line between many classes. However, given a lin-
early separable 2 classes data, we can draw many separate lines that satisfy the
constraints that linearly separate 2 classes. So which line do you choose? As
natural, you will choose the one that have the largest distance to the closest
elements of 2 classes. That is the idea behind the SVM. The closest elements are
called Support Vectors, that’s why SVM got that name. The whole problem
of SVM is a convex optimization.

First, let’s defined a functional margin. Let d : wTx + b = 0 be a linear
decision boundary. The functional margin for a point (xi, yi) is defined as:

yi(wTxi + b)

For a fixed w and b, the larger functional value, the more confidence we have
about the prediction. Next, we want to find w and b so we can relax to get a
possible goal: find a set of w and b so that all training data points will have
large (maximum) functional margin. However, we can arbitrarily change the
functional margin without changing the boundary at all. So what we need here
is geometric margin as follow:

yi(wTxi + b)

||w||
It measures the geometric distance between the point and the decision bound-

ary. It can be either positive or negative: Positive if the point is correctly
classified or Negative if the point is misclassified.
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We can represent the constrained optimization as follow:

max
w,b

γ

s.t :
yi(wTxi + b)

||w||
≥ γ, i = 1, ., N

We can transform this optimization to new form as follow:

max
w,b

1

2
||w||2

s.t : yi(wTxi + b) ≥ 1, i = 1, ., N

From this form, we can use Quadratic Programming (QP) with La-
grangian and solve the dual problem instead of primal (the form above).

Let α be KTT multipliers, the previous constrained problem can be ex-
pressed as:

arg min
w,b

max
α≥0

{
1

2
‖w‖2 −

n∑
i=1

αi[yi(w · xi − b)− 1]

}
And the solution can be expressed as a linear combination of the training

vectors:

w =

n∑
i=1

αiyixi

Only a few αi will be greater than zero. The corresponding xi are exactly
the support vectors, which lie on the margin and satisfy yi(w.xi − b) = 1.
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We can compute b:

b =
1

NSV

NSV∑
i=1

w.xi − yi

We have the dual form: Maximize (in αi)

L̃(α) =

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjx
T
i xj =

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjk(xi,xj)

subject to (for any i = 1, . . . , n)

αi ≥ 0

and to the constraint from the minimization in b

n∑
i=1

αiyi = 0

Here the kernel is defined by k(xi,xj) = xi · xj .
W can be computed thanks to the α terms:

w =
∑
i

αiyixi

.
In practice, we can just regard the QP solver as a “black-box” without

bothering how it works. For classifying a new input z, we compute:

A = w · z + b = (

s∑
j=1

αtjy
tjxtj ) · z + b =

s∑
j=1

αtjy
tj (xtj · z) + b

classify z as Positive if A > 0 and Negative otherwise. w need not be com-
puted/stored explicitly, we can store the αi’s, and classify z by using the above
calculation, which involves taking the dot product between training examples
and the new example z.

Up to this point, we can let SVM solve the linearly separable data. However,
how does SVM deal with noise? The real data must contain noise so using
maximum margin SVM is not robust to noise. Thus, we come to the new type
of SVM called Soft Margin SVM.
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We allow functional margins to be less than 1 (could even be ¡ 0). The ξ
can be viewed as the “errors” of our fat decision boundary. We have a tradeoff
between making the decision boundary fat and minimizing the error. Parameter
c controls the tradeoff. Large c: ξ’s incur a large penalty, so the optimal solution
will try to avoid them, that means margin will be smaller than 1. Else, small
c: small cost for ξ’s, we can sacrifice some training examples to have a large
classifier margin. c puts a box-constraints on α, weights of support vectors. It
limits the influence of individual support vectors (maybe outliers). c is hyper-
parameter to be set, so we can use cross-validation to do so.

And the next important features of SVM as I said above is Kernel Func-
tion. It helps SVM to deal with non-linearly separable data. I said this problem
before in linear regression. With Linear Regression, we use high order polyno-
mial to divide non-linearly separable data. However, with SVM, we use a dif-
ferent approach that call kernel trick. We map the input to higher dimensional
space can solve the linearly inseparable cases.

A function k(xi, xj) is called a kernel function if k(xi, xj) =< φ(xi), φ(xj) >
for some φ. For example, K(a, b) = (a · b+ 1)2. This is equivalent to map to the
quadratic space! In practice, we specify the kernel function without explicitly
stating the transformation φ. Given a kernel function, finding its corresponding
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transformation can be very cumbersome. A kernel function can be viewed as
computing some similarity measure between objects. We can apply this kernel
trick in SVM as follow:

Maximize (in αi )

L̃(α) =

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjk(xi,xj)

subject to (for any i = 1, . . . , n)

0 ≤ αi ≤ C,

and

n∑
i=1

αiyi = 0

.
We have more common kernel functions:

• Linear kernel: k(a, b) = a · b

• Polynomial kernel: k(a, b) = (a · b+ 1)d

• Radial Basic Function kernel: k(a, b) = exp ( (a−b)2
2σ2 )

• Closure probability of kernel: if K1 and K2 are kernel functions, then
following are all kernel functions:

– K(x, y) = K1(x, y) +K2(x, y)

– K(x, y) = aK1(x, y)

– K(x, y) = K1(x, y)K2(x, y)

Here are some notes with kernel function:

• In practice, we often try different kernel functions and use cross-validation
to choose

• Linear kernel, polynomial kernels (with low degrees) and RBF kernels are
popular choices

• One can also construct a kernel using linear combinations of different
kernels and learn the combination parameters (kernel learning)

• Selecting the kernel parameter and c is very strong impact on performance
and often the optimal range is reasonably large

When comparing to Logistic Regression (another Discriminative Model), we
have the following notices:
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• If n (number of features) is large and m (number of training example) is
small: we should use Logistic regression or SVM with linear kernel.

• If n is small and m is intermediate, we should use RBF.

• If n is small and m is large, SVM will be slow to run with RBF kernel.
We could manually create or add more features and apply SVM with RBF
kernel or use logistic regression of SVM with linear kernel.

• Logistic regression and SVM with a linear kernel are pretty similar. They
do similar thing and get similar performance.

That completes all basic information about SVM. Next we move on another
Discriminative model called Decision Tree.

4.3 Decision Tree

Decision trees have many appealing properties. They are similar to the human
decision process, and easy to understand. They deal with both discrete and
continuous features. With highly flexible hypothesis space, as the number of
nodes (or depth) of the tree increase, decision tree can represent increasingly
complex decision boundaries as the following figure.

Like SVM, we have to set up a possible goal for Decision tree is: finding
a decision tree h that achieves minimum error on training data. With that
possible goal, we have the greedy algorithm for finding h. Instead of trying to
optimize the whole tree together, we try to find one test at a time. We assume
all features are discrete values. Remember that this algorithm is not guaranteed
to find an optimal decision tree.

1. Choose the best attribute to test on at the root of the tree.

2. Create a descendant node for each possible outcome of the test

3. Training examples in training set S are sent to the appropriate descendent
node
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4. Recursively apply the algorithm at each descendant node to select the best
attribute to test using its associated training examples. If all examples in
a node belong to the same class, turn it into a leaf node, label with the
majority class

The problem here is how to choose the best test to choose the best attribute.
There are many different tests, at here, we choose mutual information (or in-
formation gain criterion) test to present because it is quite easy to understand
and have good performance in general. The first time to know is Entropy. In
information theory, entropy is the measure of uncertainty of a random variable.
Given a set of training examples S and y denote the label of an example ran-
domly draw from S. If all examples belong to one class, y has 0 entropy. If y
takes positive and negative values with a 50

H(x) =

k∑
i=1

pi log2

1

pi
= −

k∑
i=1

pi log2 pi

With the above example, we will choose to split the data with the feature
“Outlook”, which has higher information gain value. However, with this test,
there is a problem that multi-nomial features (which has more than 2 possible
values) will have higher information gain in general. This is called the bias, to
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avoid this, we can rescale the information gain as follow:

arg max
j

H(y)−H(y|xj)
H(xj)

. Next, how we deal with continuous features. We test against a threshold θj
for xj . First we sort the examples according to xj . Move the threshold θ from
the smallest to the largest value. Select θ that gives the best information gain.
Note that, we only need to compute information gain when class label changes.
Decision tree has a very flexible hypothesis space. As the nodes increase, we can
represent arbitrarily complex decision boundaries. This can lead to over-fitting
(due to noise and outliers). To avoid Over-fitting, we can early stop, which
means to stop growing the tree when data split does not offer large benefit.
Or we can use post pruning. One thing to note here is Decision tree has a
well-known implementation called C4.5 by Ross Quinlan.

We complete all basic information about decision tree here. Next, we talk
about the very famous model, and gain the current attention from many ML
researchers around the world.

4.4 Neural Network

Neural Network is also known as Artificial Neural Network or ANN, it
stimulates the activity of a neuron in biological neural networks. To study
about ANN, we first talk about its smallest component called Neuron.

It receives n inputs (plus a bias term), then multiplies each input by its
weight. Next it applies activation function to the sum of results and finally
outputs result. Activation function controls whether a neuron is “active”
or “inactive”. There are several common activation functions. For example,
Threshold function (outputs 1 when input is positive and 0 otherwise, similar
to perceptron). Another activation function is sigmoid function that we use
in Logistic Regression, this function has a good property for optimization is that
it is differentiable.

1

1 + e−x

Next, we move on to basic multilayer Neural Network
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In Input layer, the number of neurons comprising that layer is equal to the
number of features (columns) in your data. Some NN configurations add one
additional node for a bias term. Each Hidden layer receives its inputs from
the previous layer and forwards its outputs to the next - feed forward struc-
ture. Output layer: sigmoid activation function for classification, and linear
activation function for regression.

NN has a very powerful representational ability. With the combination of dif-
ferent weights of each input and sigmoid function, it can represent any Boolean
Formula and arbitrary function.

Before going to deeper the action of NN, I will discuss some terms used in
NN:
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NN will find the best wi,j for the whole network, we also use Gradient
Descent as in Linear Regression. We have to minimize the mean squared error
(MSE) on the training set.

J(W ) =
1

2

N∑
i=1

(ŷi − yi)2

Ji(W ) =
1

2
(ŷi − yi)2

A useful fact: the derivative of the sigmoid activation function is

dσ(x)

dx
= σ(x)(1− σ(x))

After calculating all ai from input layer to output layer to get the final ŷ. We
next calculate the special term call “error” δ from output layer and push back to
input layer. this process called Back Propagation. We calculate the “error”
as follow. If current node is in output layer, for example node 9 in the above
figure: δi9 = (ŷi − yi)ŷi(1− ŷi). If current node is in hidden layer, for example
node 6 in the above figure, δi6 = δi9 · w9,6 · ai6(1 − ai6). Or we can have general
form:

δ = activation functon · sum of signal with weights

We have the following back propagation training:

• Initialize all the weights with small random values

25



• Repeat

– For all training examples, do:

– Begin Epoch

∗ For each training example do

∗ Compute the network output

∗ Compute the error

∗ Backpropagate this error from layer to layer and adjust weights
to decrease this error

– End Epoch

Put it altogether, we have the following back propagation:

For Batch Gradient Descent, we get the
∑N
i=1 ∂WJi(W ) for each example i.

Then take a gradient descent step. With online or stochastic Gradient Descent,
we take a gradient descent step with ∂WJi(W ) as it is computed in above
algorithm. Some important notice on training:

• No guarantee of convergence, may oscillate or reach local minima.

• In practice, many large networks can be adequately trained on large
amounts of data for realistic problems

• Many epochs (thousands) may be needed for adequate training, large data
sets may require hours or days of CPU time.

• Termination criteria can be: Fixed number of epochs, Threshold on train-
ing set error, or Increased error on a validation set.
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Notes on Proper Initialization:

• Start in the “linear” regions

– keep all weights near zeros, so tht all sigmoid unites are thir linear re-
gions. this makes the whole net the equivalent of one linear threshold
unit - a relatively simple function.

– This will also avoid having very small graident

• Break symmetry

– If we start with all weights equal, what would happen?

– Ensure that each hidden unit has different input weights so that the
hidden units move in different directions.

• Set each weight to a random number in the range

[−1,+1]× 1√
fan− in

where the “fan-in” of weight wv,u is the number of inputs to unit v

Next, we talk about some problems with NN. Over-training prevention and
over-fitting prevention

• Running to many epochs may overtrain the network and result in overfit-
ting.

• Keep a validation set and test accuracy after every epoch. Maintain
weights for best performing network ont he validation set and return it
when performance decreases significantly beyound this.

• To avoid losing traiing data to validation:

– Use 10-fold cross-validation to determine the average number of epochs
that optimizes validation performance.

– Train on the full data set using this many epochs to produce the final
result.

• Also, too few hidden units prevent the system from adequately fitting the
data and learning the concept.

• Too many hidden units leads to over-fitting.

• Similar cross-validation method can be used to decid an appropriate num-
ber of hidden units.

• Another approach to preventing over-fitting is weight decay, in which we
multiply all weights by some fraction between 0 and 1 after each epoch.

– Encourages smaller weights and less complex hypotheses.
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– Equivalent to including an additive penalty in the error function pro-
portional to the sum of squares of the weights of the network.

Special Notice on Input and Output:

• Appropriate coding of inputs/outputs can make learning easier and im-
prove generalization.

• Best to encode discrete multi-category features using multiple input units
and include one binary unit per value

• Continuous inputs can be handled by a single input unit, but scaling them
between 0 and 1

• For classification problems, best to have one output unit per class. Con-
tinuous output values then represent certainty in various classes. Assign
test instances to the class with the highest output.

• Use target values of 0.9 and 0.1 for binary problems rather than forcing
weights to grow large enough to closely approximate 0/1 outputs.

• Continuous outputs (regression) can also be handled by scaling to the
range between 0 and 1

With a basic neural network, we can build up another powerful network
called deep learning that gain the recent attention of ML researchers. I will not
discuss deep learning in these series. I will try my best to cover this knowledge
later. Next, I will discuss about Ensemble methods to complete the Supervised
Learning at here.

4.5 Ensemble Method

Ensemble methods use multiple learning algorithms to obtain better predictive
performance than could be obtained from any of the constituent learning al-
gorithms. We use different learning sets and/or learning algorithms to make
better performance. There have been a wide range of methods developed. We
will discuss some popular approaches: bagging (and Random Forest, a vari-
ant that builds de-correlated trees) and boosting. Both methods take a single
(base) learning algorithm (learner) and generate ensembles.

4.5.1 Bagging

Given training set S, bagging works as follows:

1. Create T bootstrap samples S1, . . . , ST of S as follows:

• For each Si: Randomly drawing |S| examples from S with replace-
ment

• Note: with large |S|, each Si will contain 1 − 1
e ≈ 63.2% unique

examples
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2. For each i = 1, . . . , T compute hi = Learn(Si)

3. Output H =< h1, . . . , hT ,majority Vote >

Next we discuss the stability of Learner. A learning algorithm is unstable
if small changes in the training data can produce large changes in the output
hypothesis or high variance, otherwise stable. Bagging will have little benefit
when used with stable learning algorithms (i.e, most ensemble members will
be very similar). Bagging generally works best when used with unstable yet
relatively accurate base learners (or high variance and low bias classifiers). We
usually use Bagging with Decision Tree because it is a high variance algorithm,
especially Decision Stump (a tree with a singular node). Another example of
high variance learner is high order polynomial linear regression....

4.5.2 Random Forest

Random Forest is an extension of bagging. It builds an ensemble of de-correlated
decision trees. It is one of the most successful classifiers in current practice
because it is very fast, easy to train and there are many good implements
available. Each bootstrapped sample is used to build a tree. When building
the tree, each node only chooses from m < M randomly sampled features. In
other words, it combines “bagging” idea and random selection of features. Gini
index is used to select the test just like in C4.5.

To read more about Random Forest, you can look at http://www.stat.

stanford.edu/~hastie/Papers/ESLII.pdf. There is also available package at
here: http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

4.5.3 Boosting

With bagging: individual classifiers were independently learned. However, with
Boosting, it looks at errors from previous classifiers to decide what to focus on for
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the next iteration over data. A successive classifier depends on its predecessors.
Thus, it puts more weights on ‘hard’ examples. One popular boosting algorithm
that shows highly effectiveness (very often they outperform ensembles produced
by bagging) is AdaBoost.

AdaBoost works by invoking Learn many times on different distributions
over the training data set. So we need to modify base learner protocol to
accept a training set distribution as an input. It indicates the base learner
the importance of correctly classifying the i’th training instance. AdaBoost
performs L boosting rounds, the operations in each boosting round l are:

1. Call Learn on data set S with distribution Dl to produce lth ensemble
member hl, where Dl is the distribution of round l.

2. Compute the (l+ 1)th round distribution Dl+1 by putting more weight on
instances that hl makes mistakes on.

3. Compute a voting weight αl for hl.

4. Output the ensemble hypothesis is: H =< h1, . . . , hL,weighted Vote(α1, . . . , αL) >

We have the following detailed AdaBoost algorithm:

It is often straightforward to convert a base learner to take into account
an input distribution D. When it’s not straightforward, we can resample the
training data according to D. Here are some interesting facts about Boosting.
Training error goes to zero exponential fast. Boosting drives training error
to zero, but it will not overfit because boosting is often robust to overfitting
(but not always). Test error continues to decrease even after training error
goes to zero because Adaboost adds more classifiers into our ensemble, the
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training examples are getting larger margin (more confidence), thus improving
the performance of the ensemble on the test data. In the order hand, boosting
also has some pitfalls. It is sensitive to noise and outliers. If the number of
outliers is small number, they can help to identify them. However, too many
outliers can degrade classification performance (boosting might end up putting
more and more weight on noise examples) and dramatically increase the time
to converge. This phenomenon does not happen in Bagging because the noise
does not get amplified and it could even be removed in boost-strap sampling
procedure.

We conclude the Ensemble method with the comparing properties between
Bagging and Boosting:

To this point, we complete all discussions about ensemble method as well as
classification problem and supervised learning. In the next section, I will talk
about clustering problem.

5 Clustering

5.1 Introduction

In unsupervised learning, there are many tasks like grouping of clusters in the
data, low dimensional... And the most important form in Unsupervised Learning
is Clustering. Clustering is the process of grouping a set of objects into classes of
similar objects with high intra-class similarity and low inter-class similarity. For
example, find genes that are similar in their functions, group documents based
on topics and so on. An important aspect in clustering is how we estimate the
“similarity/distance” and what types of clustering.

First, the similarity is a philosophical question, so it depends on representa-
tion and algorithm. For many algorithms, we usually use the term of distance
(rather than similarity) between vectors. To measure distance, there are many
ways, one way is using Minkowski Metric:

• Suppose we have two objects x and y y both have d features: x =
(x1, . . . , xd), y = (y1, . . . , yd)
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• The Minkowski metric of order r is defined by

d(x, y) = r
√

(
∑
i

|xi − yi|r)

• Common Minskowski metrics:

– Euclidean (r = 2): d(x, y) =
√

(
∑
i(xi − yi)2)

– Manhattan distance (r = 1): d(x, y) =
∑
i |xi − yi|, also called L1

distance

– “Sup” distance (r = ∞): d(x, y) = max
i
|xi − yi|, also called L∞

distance

Another way is using Hamming Distance and Mahalanobis distance as follow:
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Or we can directly define similarity by using cosine similarities or kernels:

• Cosine similarities – commonly used to measure document similarity

cos(x, x′) =
< x · x′ >
|x| · |x′|

• Kernels - e.g., RBF (Gassian) Kernel

S(X,X ′) = exp
−|X −X ′|2

2σ2

Next, we talk about types of clustering algorithms. There are 2 main types:
Hierarchical algorithms and Partition algorithms. With Hierarchical al-
gorithm, we have 2 approaches: Bottom up (agglomerative) and top down (di-
visive). We will discuss more bottom up approach. In Partition algorithms, we
have 3 main algorithm, those are K-means, Mixture of Gaussian (GMM)
and Spectral Clustering.

5.2 Hierarchical Agglomerative Clustering (HAC)

HAC starts with each object in a separate cluster and repeatedly joins the
closest pair of clusters until there is only one cluster. So how we define the
closest pair of clusters, there are 4 types: Single-link, complete-link, centroid
and average-link as described follow (table is taken from Wikipedia: )

Names Formula
Maximum or complete-linkage clustering max { d(a, b) : a ∈ A, b ∈ B }.

Minimum or single-linkage clustering min { d(a, b) : a ∈ A, b ∈ B }.
Average linkage clustering, or UPGMA 1

|A||B|
∑
a∈A

∑
b∈B d(a, b).

Centroid linkage clustering, or UPGMC ||cs − ct||

Here is an example of single-linkage clustering and complete-linkage clustering
respectively:
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To visualize the result of HAC, we use Dendrogram. The height of the joint
= the distance between two merge clusters. The merge distance monotonically
increases as we merge more and more for single, complete and average linkage
methods, but not for the centroid method. We can use Dendrogram to identify
the number of clusters in data and well-formed clusters. Bellow is Dendrogram
of single and complete linkage method.

We complete discussion about HAC, next we move on to Partitional Clustering.
Given a data set of n points, we know that there are k clusters in the data. In

general, there are O(kn) ways to partition the data, but how we decide which
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is better? One intuition says that we want tight clusters. This leads to the
following objective function

k∑
i=1

∑
x∈Ci

|x− µi|2

It is the squared distance between data point x and its cluster center.

5.3 Kmeans

Below is the k-means algorithm. We will analyze the running time of this algo-
rithm. At each iteration, we reassigning clusters: O(kn) distance computations
and we computing the centroids of each cluster: O(n). We assume these two
steps are each done once for l iterations: O(lkn). It is a linear in all relevant
factors, assuming a fixed number l of iterations and k number of clusters, it is
more efficient than O(n2) of HAC.

Furthermore, k-means is guaranteed to converge because it takes an alter-
nating optimization approach, each step is guaranteed to decrease the objective
function. This is a very interesting characteristics of k-means. However, it is
highly sensitive to the initial seeds. So it needs multiple random trials: choose
the one with the best sum of squared loss. Besides, K-means is exhaustive, be-
cause it clusters every point, no notion of the outlier. So noise and outliers will
cause problems because they will become singular clusters and bias the centroid
estimation. K-means also has drawbacks that data point is deterministically
assigned to one and only one cluster, but in reality, clusters may overlap. So
we need another ‘soft-clustering” algorithm that data points are assigned to
clusters with certain probabilities called “Gaussian Mixture Model”
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5.4 Gaussian Mixture Model

As we discussed in Gaussian Discriminative Analysis. Given a set of x’s, es-
timate α1, . . . , αk, θ1, . . . , θk. Once the model is identified, we can compute
p(y = i|x) for i = 1, . . . , k.

However, when we use MLE to maximize the term: arg max
θ

∏
j P (xj). We

meet the log of sum, and it is difficult to optimize! We can use gradient ascent,
but is very inefficient as follow:

To deal with this problem, we introduce new optimize method called Ex-
pectation Maximization (EM). EM is a highly used approach for dealing
with hidden (missing) data, here are the cluster labels. The much simpler than
gradient methods. It is an iterative algorithm that starts with some initial guess
of the model parameters. And it iteratively performs two linked steps:

1. Expectation (E-step): given current model parameter λt, compute the
expectation for hidden (missing) data.

2. Maximization (M-step): re-estimate the parameters λt+1, assuming that
the expected values computed in the E-step are the true values.

We have some interesting points about EM to discuss. Like K-means, it is guar-
anteed to converge because P (x|θ) must increase or remain the same between
iterations. It bases on Optimization transfer for MLE with latent data. In prac-
tice, it may converge slowly, one can stop early if the change in log-likelihood is
smaller than a threshold. However, it may converge to a local optimum as well.
So it needs multiple restarts.

Finally, we can apply EM in GMM in simple case and general Gaussian:
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5.5 Spectral Clustering

Back to K-means, we have discussed that K-means is highly sensitive to initial
starts. So how we choose the best initial for k-means. One approach is Spectral
Clustering. We can represent data points as the vertices V of a graphG. Vertices
are connected by edges E. Edges have weights described by matrix W . Large
weight W (i, j) means that the points i and j are very similar; otherwise, small
weights imply dissimilarity. To calculate the similarity between objects, we use
a Gaussian Kernel:

W (i, j) = exp
−|xi − xj |2

σ2

We define some necessary terms in graph:

• Degree of nodes: di =
∑
j wi,j

• Volume of a set: vol(A) =
∑
j∈A di, A ⊆ V

• Cut(A,B): sum of the weights of the set of edges that connect the two
groups: cut(A, b) =

∑
i∈A,j∈B wij .

• Mincut: minimize weight of connections between group: min
A∩B=∅,A∪B=V

Cut(A,B).

However we prefer more balance partitions, so we need normalized Cut

• Normalized Cut: Ncut(A,B) = cut(A,B)
V ol(A) + cut(A,B)

V ol(B) = cut(A,B)V ol(A)+V ol(B)
V ol(A)V ol(B) .

We get maximized when Vol(A) and Vol(B) are equal thus it encourages
balanced cut.

• Diagonal Matrix D(i, i) = di

With necessary terms, we now have the spectral clustering algorithm by Ng,
Jordan, and Weiss 2001):
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5.6 Model Selection

As we have discussed so far about Clustering, one important point that all
algorithms have to deal with is finding the best k clusters to give the best
results. It is called Model Selection in Unsupervised Learning. So we will talk
about this problem in this section.

As you know, each choice of k corresponds to a different statistical model
for the data. Model selection searches for a model (a choice of k) that gives us
the best fit of the training data. We have many approaches: heuristic, penalty,
cross-validation and stability based methods.

With the heuristic method, we plot the sum of squared error for different k
values. SSE will monotonically decrease as we increase k. We pay attention to
knee points because it suggests possible candidates for k.

With penalty method, we usually use Bayesian Information Criterion (BIC) or
AIC as measures.
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With Cross-validation method, the likelihood of the training data will always
increase as we increase k. so we use cross-validation as follow:

• For each fold, learn the GMM model using the training data

• Compute the log-likelihood of the learned model on the remaining fold as
test data.

With Stability Based methods, Stability is defined as repeatedly produce similar
clustering on data originating from the same source. So high level of agreement
among a set of clusterings =¿ the clustering model k is appropriate for the data.
We evaluate multiple models and select the model resulting in the highest level
of stability. We have 2 main algorithms in stability method.

5.7 Model Evaluation

Unlike supervised learning, we have class label, and we can directly compute
the accuracy of testing data, in unsupervised learning, we don’t have these label
so we have different measurements called Internal Criterion and External
Criterion. With Internal criterion, a good clustering will produce high quality
clusters if it has high intra-cluster similarity and low inter-cluster similarity.
But good scores on an internal criterion do not necessarily translate into good
effectiveness in an application. An alternative to internal criteria is direct eval-
uation in the application of interest. So we need an external criterion. Rand
Index, Normalized Rand Index are used when we know the ground truth, and
Purity and Normalized Mutual Information are used when we do not know the
ground truth.

Suppose we have the true class labels (ground truth) are known, the validity
of clustering can be verified by comparing the class labels and clustering labels.
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To compute purity, each cluster is assigned to the class which is most frequent
in the cluster, and then the accuracy of this assignment is measured by counting
the number of correctly assigned documents and dividing by N . Formally:

purity(Ω,C) =
1

N

∑
k

ωk ∩ cj
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Where Ω = ω1, ω2, . . . , ωK is the set of clusters and C = c1, c2, . . . , cJ is the
set of classes. High purity is easy to achieve when the number of clusters is
large - in particular, purity is 1 if each document gets its own cluster. Thus, we
cannot use purity to trade off the quality of the clustering against the number
of clusters. A measure that allows us to make this tradeoff is normalized mutual
information or NMI. The value of NMI is always between 0 and 1.

NMI(Ω,C) =
I(Ω;C)

[H(Ω) +H(C)]/2

where:

H(Ω) = −
∑
k

P (ωk)logP (ωk)) = −
∑
k

|ωk|
N

log
|ωk|
N

I(Ω;C) =
∑
k

∑
j

P (ωk ∩ cj) log
P (ωk ∩ cj)
P (ωk)P (cj)

=
∑
k

∑
j

|ωk ∩ cj |
N

log
N |ωk ∩ cj |
|ωk||cj |

where P (ωk), P (cj), P (ωk ∩ cj) are the probabilities of a document being in
cluster ωk, class cj , and in the intersection of ωk and cj , respectively.

For more information and example about above measurements, you can look at
here: http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-
1.html. We complete the clustering problem at here. In the next and the last
section, we will discuss the Dimension reduction and some important theories
in Machine Learning.

6 Dimension Reduction

Why we need dimension reduction? In high dimensional data or a large number
of features, for example, documents represented by thousands of words, or mil-
lion of bigrams or Images represented by thousands of pixels. There are a lot
of redundant and irrelevant features like not all words are relevant for classify-
ing/cluster documents). Also, it is difficult to interpret and visualize the high
dimensional data. And one problem is that when we compute the distances to
nearest and furthest neighbors will be similar.

With Linear Features, we can linearly project n dimension data onto a k
dimension data. If supervised learning, we would like to maximize the separation
among classes, we use Linear Discriminant Analysis or LDA. If unsupervised
learning, we would like to retain as much data variance as possible, we use
Principle Component Analysis or PCA.
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6.1 Linear Discriminant Analysis (LDA)

LDA is also named Fisher Discriminant Analysis. It can be viewed as a dimen-
sion reduction method with a generative classifier p(x|y): Gaussian with distant
µ for each class but shared Σ. So we would find a projection direction so that
the separation between classes is maximized. In other words, we are looking for
a projection that best discriminates different classes.

One way to measure separation is to look at the class means µ1 and µ2. we
want the distance between the projected means to be as large as possible. We
also want the data points from the same class to be close as possible. This can
be measured by the within-class scatter (variance within the class). Combining
the two sides, we have the following objective:

That is LDA for 2 classes. How about LDA for Multi-Classes. We can use:

• Many variants exist. This is one of the commonly used ones:

J(w) =
wTSBw

wTSww
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• Objective remains the same, with slightly different definition for between-
class scatter:

SB =
1

k

k∑
i=1

(mi −m)(mi −m)T

where m is the overall mean

• Solution: k − 1 eigenvectors of S−1w SB

We have some comments about LDA. The result of LDA is optimal if and
only if the classes are Gaussian and have equal covariance. It is better than
PCA (discuss later), but not necessarily good enough.

6.2 Principle Component Analysis (PCA)

When the label of data is unknown, we have another solution for dimension
reduction called PCA. The goal of PCA is to account for the variation in the
data in as few dimension as possible. We have the following figure describing
the Geometric picture of Principle components (PCs)

The first and second PC is the projection direction that maximize the vari-
ance of the projected data (note: z1⊥z2).

• Given n data points: x1, . . . , xn

• Consider a linear projection specified by v

• The projection of x onto v is z = vTx

• The variance of the projected data is: var(z) = var(vTx) = vTCov(x)v =
vT v

• The 1st PC maximizes the variance subject to the constraint vT v = 1

S = Cov(x) =
1

n

n∑
i=1

(xi = x̄)(xi − x̄T )
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Altogether, we have the following steps to find PCA:

• Calculate the covariance matrix of the data S

• Calculate the eigen-vectors/eigen-values of S

• Rank the eigen-values in decreasing order

• Select a fixed number of eigen-vectors, or just enough to retain a fixed
percentage of the variance, for example 75%, the smallest d such that∑d

i=1 λi∑
i λi

≥ 75%

• Note: You might loose some info. But the eigen-values are small, the lost
is not much.

So we have some conclusions about PCA:

• PCA helps to reduce the computational complexity

• It also helps in supervised learning too because it reduces dimension (sim-
pler hypothesis space) and smaller VC dimension (less over-fitting).

• PCA can also be seen as noise reduction because some noise is diminished
when projected onto PC

• Can use PCA to visualize high dimension data for getting the first notion
of data, usually d = 2ord = 3

• However, you may lose important information when the small variance
directions contain useful information, for example, classification follow:

PCA and LDA algorithm above is just worked in Linear Dimension. We
next talk about nonlinear dimension reduction.
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6.3 Nonlinear Dimension Reduction

Data often lies on or near a nonlinear low-dimensional curve. We call such low
dimension structure manifolds.

We have ISOMAP (Isometric Feature Mapping). It preserves the global, non-
linear geometry of the data by preserving the geodesic distances. There are two
steps:

1. Approximate the geodesic distance between every pair of points in the
data

• The manifold is locally linear

• Euclidean distance works well for points that are close enough (con-
necting i and j if d(i, j) < ε or i is one of j’s kNN). d(i, j) is Euclidean
distance

• For the points that are far apart, their geodesic distance can be ap-
proximated by summing up local Euclidean distance. (can be com-
puted as shortest path distance between 2 points)

2. Find a Euclidean mapping of the data that preserves the geodesic distance.

We have the some notices about ISOMAP. It preserves global nonlinear structure
by approximating geodesic distance. It is sensitive to the parameters used
in the graph construction (k in k-isomap and ε in ε-isomap). If data is overly
sparse, the shortest path approximation to the geodesic distance can be poor
because we may not have enough data to construct the manifold.

Up to this point, we complete whole basic idea about dimension reduction. In
the next section, we will discuss some important theories in Machine Learning.

7 Learning Theory

This part, I think is the most boring part of our Machine Learning series, but
it is quite important to build stronger intuition and develop the rule of thumb
about how to best apply learning algorithms in different settings, so we have to
mention in here. So let’s get started!
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7.1 Bias and Variance

First, we will look the analysis of Bias and Variance. We can write the
expected loss E(L) as follow:

Where:

• Bias: how well on average can our learning algorithm capture the target
function

• Variance: how significantly does our learning algorithm fluctuate depend-
ing on the training set

• Noise: inherent to the data generation process itself, not controlled by the
choice of learning algorithm

Next we talk about the Bias-Variance Trade-off. Taking an example from an
over-regularized model (large λ or simple model) will have the high bias but
low variance while an under-regularized model (small λ or complex models) will
have a high variance but low bias.

Then, we talk about computational learning theory. It provides a theo-
retical analysis of learning and can show us when to expect a learning algorithm
to succeed and shows when learning may be impossible. There are typically 3
areas:

• Sample Complexity: How many examples we need to find a good hy-
pothesis?
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• Computational Complexity: How much computational power we need
to find a good hypothesis?

• Mistake Bound: How many mistakes we will make before finding a good
hypothesis?

We have the following framework for Noise Free Learning:

• Assumptions:

– Data generated according to an unknow distribution D(x)

– Data labeled according to an unknown function f : y = f(x)

– Hypothesis space H contains the target function f

• a simple learning framework

– looks for a hypothesis h ∈ H consistent with training data
Consistent-Learn
Input: access to a training example generator, sample size m, hy-
pothesis space H

1. Draw a set E of m training examples (drawn from the unknown
distribution and labeled by the unknown target)

2. Find an h ∈ H that agress with all training examples in E

Output: h

We define the generalization Error of a hypothesis h is the probability that
h will make a mistake on a new example randomly drawn from D

error(h, f) = P (h(x) 6= f(x))

Realistic Expectation of Learning

• Generalization Error:

– Many possible target functions and small set of training examples

– Can’t expect algorithm to achieve zero generalization error

– Satisfied with an approximately correct hypothesis: an h with a
small generalization error ε (that we specify)

• Reliability:

– Non-zero probability to get a bad training set (e.g. non-zero proba-
bility that the training set contains a single repeated example).

– Can’t expect the algorithm to always return an ε-good hypothesis.

– Will be satisfied if it returns an ε-good hypothesis with high proba-
bility (probably).
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• How many training examples are required such that the algorithm is prob-
ably, approximately correct (PAC)?

– That is , with probability at least 1 − δ, the algorithm returns a
hypothesis with generalization error less than ε (ε-good)?

– e.g. return a hypothesis with accuracy at least 95% (ε = 0.05) at
least 99% (δ = 0.01) of the time.

Base on types of H, we have different cases:

7.2 Computational Learning Theory

7.2.1 Case 1: Finite Hypothesis Space

We have Blummer Bound for consistent hypothesis and Hoeffding Bound
for no consistent hypothesis

• Consistent hypothesis

– Sample complexity required to ensure (1−δ) probability of returning
a ε-good hypothesis is

m ≥ 1

ε
(ln |H|+ ln

1

δ
)

– Given m samples, with at least 1 − δ prob., the learned hypothesis
will have generalization error

ε ≤ 1

m
(ln |H|+ ln

1

δ
)

• No consistent hypothesis, learner finds the hypothesis h that minimizes
training error

ε(hL) < ε(h∗) + 2

√
1

2m
log
|H|
δ

7.2.2 Case 2: Infinite Hypothesis Space

For finite spaces, the complexity of a hypothesis space was characterized roughly
by |H|. For infinite spaces, we will introduce a concept called VC-dimension.
We have the following definition:
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• Definition of VC-dimension: The Vapnik-Chervonenkis dimension (VC-
dimension) of an hypothesis space H is the size of the largest set S than
can be shattered by H

– As long as we can find one set of size m that can be shattered by H,
then V C(H) ≥ m

– It does not matter if some other set of size m cannot be shattered by
H

• So to prove that the VC dimension of H is m, we need to:

– Show there exists a set of size m that can be shattered by H

– Show that no set of size m+ 1 can be shattered by H

In general, the VC-dimension for linear separators in n-dimensional space
is n+ 1. A good heuristic is that VC-dimension is equal to the number of tun-
able parameters in the model (unless the parameters are redundant). For finite
space H, we have V C(H) ≤ log2|H|. VC dimension measures the complexity
of |H|

So we have bounds for Consistent Hypotheses:

• The following bound is anologous to the Blumer bound.
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• if h ∈ H is an hypothesis consistent with a training set of size m, and
V C(H) = d, then with probability at least 1− δ, h will have an error rate
less than ε if

m ≥ 1

ε
(4 log2

2

δ
+ 8d log2

13

ε
)

• Compared to previous bound based on H:

m ≥ 1

ε
(ln |H|+ ln

1

δ
)

since V C(H) ≤ log2(H), VC dimension generally gives a tighter upper
bound on the number of examples required for PAC learning

And Bounds for Inconsistent Hypotheses:

• Theorem Suppose V C(H) = d and a learning algorithm finds h ∈ H
with error rate εT on a traiing set of size m. Then with probability 1− δ,
the true error rate ε of h is

ε ≤ εT +

√
d(log

2m

d
+ 1) + log

4

δ

• Empirical Risk Minimization Principle: If you have a fixed hypothesis
space H, the your learning algorithm should minimize εT : the error on
the training data. (εT is also called the “empirical risk”)

8 Related Topics

8.1 Major Problems in Machine Learning

Besides 3 basic and important task in Machine Learning comprises of Regression,
Classification and Clustering as discussed above, we also have many interesting
problems as follow:

• Anomaly Detection: in the discussion above, we talk about outliers
and noise are greatly affect the performance of many learning algorithms.
Therefore, if we can detect and discards these data in our process, it will
boost our learning algorithm so much. The process of detect these data
called Anomaly Detection. You can read for an overview at this Wikipedia
page: https://en.wikipedia.org/wiki/Anomaly_detection You can
read more detail in the survey: http://cucis.ece.northwestern.edu/

projects/DMS/publications/AnomalyDetection.pdf

• Reinforcement learning: according to Andrew Ng and his lecture notes
in course cs229 (http://cs229.stanford.edu/). He introduces reinforcement
learning as follow: “In supervised learning, we saw algorithms that tried
to make their outputs mimic the labels y given in the training set. In that
setting, the labels gave an unambiguous”right answer” for each of the
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inputs x. In contrast, for many sequential decision making and control
problems, it is very difficult to provide this type of explicit supervision
to a learning algorithm... In the reinforcement learning framework, we
will instead provide our algorithms only a reward function, which indi-
cates to the learning agent when it is doing well, and when it is doing
poorly... It will then be the learning algorithm’s job to figure out how
to choose actions over time so as to obtain large rewards.” You can read
more about problems and methods in reinforcement learning at his lecture
notes: http://cs229.stanford.edu/notes/cs229-notes12.pdf

• Structured Learning: In the introduction to Generative and Discrim-
inative Model, I had discussed Probabilistic Graphical Model, with the
two example models that we discussed, i.e. Logistic Regression and Naive
Bayes. In those two models, you can express the relation between many
features (variables) and output results. The left figure describes Naive
Bayes graphical models. Each features x is independent with each other
given the class label y. And the right figure describes the Logistic Regres-
sion graphical models. The arrows go from the x nodes to the y node.
Note this is exactly the opposite of Naive Bayes models. This is two most
simplest cases of structured learning. Graphical Models also have more
powerful model general data called Bayesian Networks (BN) and Markov
Random Fields (MN) and for sequence data such as Hidden Markov Model
(HMM) and Conditional Random Field (CRF).

• Feature Learning: according to Wikipedia (https://en.wikipedia.
org/wiki/Feature_learning) “Feature Learning is a set of techniques
that learn a feature: a transformation of raw data input to a repre-
sentation that can be effectively exploited in machine learning tasks...
Traditional hand-crafted features often require expensive human labor
and often rely on expert knowledge. Also, they normally do not gen-
eralize well. This motivates the design of efficient feature learning tech-
niques, to automate and generalize this.” Feature learning comprises of
Feature Selection (choose a subset of the original set of features, read
more at: read more at here: http://www.jmlr.org/papers/volume3/

guyon03a/guyon03a.pdf) and Feature Extraction (build a new set of
features from the original feature set , read more at: http://www.pca.

narod.ru/DimensionReductionBrifReview.pdf).
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• Online Learning: All kinds of machine learning algorithm we have dis-
cussed so far based on the assumption that the training set are available
at the time we train. However, in some cases, we do not have all train-
ing data at the same time like the value of stock, or weather data... In
these cases, we use another type of approach called online learning. In on-
line learning, the mapping is updated after the arrival of every new data
point in a scale fashion. We also discussed one type of Gradient Descent
called Stochastic Gradient Descent is aimed with boosting the time pro-
cessing for Gradient Descent, but also used for this scenario. You can read
more at this Wikipedia page https://en.wikipedia.org/wiki/Online_

machine_learning

• Semi-supervised Learning: according to this Wikipedia page: (https:
//en.wikipedia.org/wiki/Semi-supervised_learning) “Semi-supervised
learning falls between unsupervised learning (without any labeled train-
ing data) and supervised learning (with completely labeled training data).
Many machine-learning researchers have found that unlabeled data, when
used in conjunction with a small amount of labeled data, can produce
considerable improvement in learning accuracy. The acquisition of labeled
data for a learning problem often requires a skilled human agent (e.g. to
transcribe an audio segment) or a physical experiment (e.g. determining
the 3D structure of a protein or determining whether there is oil at a par-
ticular location). The cost associated with the labeling process thus may
render a fully labeled training set infeasible, whereas acquisition of unla-
beled data is relatively inexpensive. In such situations, semi-supervised
learning can be of great practical value. Semi-supervised learning is also
of theoretical interest in machine learning and as a model for human
learning.” Other problems: Association Rules (https://en.wikipedia.
org/wiki/Association_rule_learning), Learn to rank (https://en.
wikipedia.org/wiki/Learning_to_rank), Grammar Induction (https:
//en.wikipedia.org/wiki/Grammar_induction)

8.2 Relations between Machine Learning and other fields

Machine Learning is a subfields of Computer Science, it explores the study and
construction of algorithms that can learn from and make predictions on data.
Also, it is always related to other fields. In this part, I will list some relations
between machine learning and:

• Artificial Intelligence: Machine Learning can be considered a subfield
of Artificial Intelligence. Its algorithms operate by building a model from
example inputs in order to make data-driven predictions or decisions,
rather than following strictly static program instructions. (according to
Wikipedia: https://en.wikipedia.org/wiki/Machine_learning). Nowa-
days, Machine Learning is the most active research field in Artificial In-
telligence.
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• Data mining, Statistics, Pattern Recognition: can be expressed
in the following diagram. You can read more in this post: http://

machinelearningmastery.com/where-does-machine-learning-fit-in/:

• Probabilistic Graphical Model (PGM): as you can see in the previous
discussion, machine learning uses a lot of models inspired from PGM like
Logistic Regression, Naive Bayes, Hidden Markov Model and Conditional
Random Field.

• Deep Learning: Deep Learning is a new area of Machine Learning re-
search, which has been introduced with the objective of moving Machine
Learning closer to one of its original goals: Artificial Intelligence. (accord-
ing to http://deeplearning.net/)

• Computer Vision and Natural Language Processing: they are both
very active research fields which apply machine learning methods. Com-
puter Vision processes vision data like images or videos while Natural
Language Processing processes language data like speech, text... Machine
Learning methods can be applied in 2 steps: pre-processing data and clas-
sification step. For example, Computer Vision uses GMM model to extract
foreground from background or NLP use HMM model to POS task.

8.3 Machine Learning Libraries

After discussing a lot of “theoretical” concept and definition used in machine
learning, in this part, I will introduce some machine learning libraries in 3 major
machine learning languages: R, Python and Matlab. You can use this section
as a reference when you are looking for a library.
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Algorithm R Python (sklearn) Matlab
Linear Regression lm() LinearRegression fitlm()

Perceptron – Perceptron perceptron()
Logistic Regression glm() LogisticRegression fitglm()

Naive Bayes naiveBayes() GaussianNB or Multino-
mialNB or BernoulliNB

fitcnb()

LDA lda() LinearDiscriminantAnalysis fitcdiscr()
SVM svm() SVC or SVR fitcsvm()

Decision Tree rpart() or
ctree()

DecisionTreeClassifier or
DecisionTreeRegressor

fitctree()

Neural Network neuralnet() MLPClassifier or MLPRe-
gressor

fitnet()

k-NN knn() KNeighborsClassifier or
KNeighborsRegressor

fitcknn()

Bagging ipred() BaggingClassifier or Bag-
gingRegressor

fitensemble()
or TreeBag-
ger()

Random Forest randomForest RandomForestClassifier
or RandomForestRegres-
sor

–

Boosting adabag() AdaBoostClassifier or Ad-
aBoostRegressor

fitensemble()

HAC hclust() AgglomerativeClustering clusterdata()
K-means kmeans() KMeans kmeans()

GMM bgmm() GMM fitgmdist()
Spectral Clustering kernelab() SpectralClustering –

PCA princomp() PCA pca()
LDA lda() transform fitcdiscr()

ISOMAP isomap() Isomap Isomap()
HMM HMM() hmmlearn hmmtrain()
CRF CRF() – crfChain()

9 Summary

I have presented to you some Machine Learning algorithms and models. Of
course, it is not enough, but it is the most basic and fundamental machine
learning algorithms, any other algorithms derived from these algorithms so you
should not worry about other topics in machine learning. Just make sure you
understand the underlined idea behinds these algorithms, you can understand
other algorithms easily.

You can find more machine learning algorithms at here:

• http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

• https://en.wikipedia.org/wiki/List_of_machine_learning_concepts
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Each algorithm presented here has its own pros and cons, no algorithm is perfect,
so you should know the characteristics of each algorithm to apply appropriately
with different situations is the most important thing!

To understand more thoroughly about Machine Learning algorithms, you
can read these documentations:

• sklearn - a popular machine learning library of python programming lan-
guage: User guides all API

• Matlab - a popular scientific and engineering programming language:
Overview

• Wikipedia page about Machine Learning: https://en.wikipedia.org/

wiki/Machine_learning

To sum up, there are 3 main tasks in machine learning: regression, classifica-
tion and clustering. Depending on different requirements, you can choose the
appropriate machine learning algorithms to belong to these 3 tasks.

• With Regression task, you have some solutions: Linear Regression, K-
Nearest Neighbor Regression, Neural Network Regression, Support Vec-
tor Regression, Decision Tree Regression, Ensemble regression (Bagging,
Random Forest, Boosting)...

• With Classification task, you have some following solutions: Perceptron
(it is the simplest), Logistic Regression, Naive Bayes, Discriminant Anal-
ysis, Support Vector Machine, Decision Tree, Neural Network, K-Nearest
Neighbors, Ensemble method (Bagging, Random Forest, Boosting)...

• With Clustering task, you have some following solutions: HAC, K-means,
GMM, Spectral Clustering, Neural Network clustering...

• Other tasks: Dimension Reduction: LDA, PCA, Isomaps,... Online Learn-
ing: K-Nearest Neighbors, Perceptron...

After deciding which group of algorithm to use, you may decide which is the
most suitable algorithm for your project, that depends on first:

• Characteristics of the data: if your data is followed any distribution of
probabilistic graphical model assume, you should use them. For example,
Gaussian Mixture Model assume your data is generated by many Gaussian
distributions, you should apply this model over other such as Logistic
Regression. Else, you do not know any information about the data, you
can use Discriminative models over any Generative models.

• Number of example data: if you have a lot of relevant training examples,
you should you Neural Network over other methods because Neural Net-
work is designed for this situation. Or if you just have adequate data,
you can use other methods over Neural Network. In case, you have few
number of example, you should use decision tree instead or simpler model
like Perceptron or Nearest Neighbors.
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• Dimension of data: if your data has too many features, you first job may
be reducing the data into smaller dimension space by some dimension
reduction algorithms like PCA (unknown label) or LDA (known label)

• Other advice: you can read more at here: http://cs229.stanford.

edu/materials/ML-advice.pdf and here: http://www.holehouse.org/
mlclass/10_Advice_for_applying_machine_learning.html

Nowadays, what you can do in machine learning. Research in machine learning
can be divided into 3 categories:

• Application research: Apply one or combination of machine learning algo-
rithms to an application in computer vision, natural language processing,
speech recognition, bioinformatics...

• Algorithmic research: If you are genius and talented, you can completely
invent new schools of machine learning algorithm like one of discussed al-
gorithms. Or you can enhance any existing algorithm to work more robust
or have better performance in specific domains like in text classification
or object recognition in image processing... One of the school of machine
learning algorithm you can make great contribution is Graphical Model
or currently Deep Learning.

• Theoretical research: this research may focus on proving some interesting
(non-trivial) properties of a new or existing learning algorithm. This fields
is used for one who are good or very good at math and reasoning skills.

To read more about some current hot topics in Machine Learning, you can read
this discussion in: Quora

I have summarized all important concepts and terms of this series in the last
figure. You can go to this link for larger figure. To this point, I have completed
discussion about some basic Machine Learning models, concepts and terms. I
hope that throughout this series, you can obtain much of interesting knowledge.
Again, I acknowledge all information including figures, information and so on on
those courses: https://www.coursera.org/learn/machine-learning, http:
//cs229.stanford.edu/ and http://classes.engr.oregonstate.edu/eecs/

fall2015/cs534/ If you have any comments, advice or questions, feel free to
send me an email. Thanks for you reading!!!
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